1021. Remove Outermost Parentheses
A valid parentheses string is either empty (""), "(" + A + ")", or A + B, where A and B are valid parentheses strings, and + represents string concatenation. For example, "", "()", "(())()", and "(()(()))" are all valid parentheses strings.
A valid parentheses string S is primitive if it is nonempty, and there does not exist a way to split it into S = A+B, with A and B nonempty valid parentheses strings.
Given a valid parentheses string S, consider its primitive decomposition: S = P_1 + P_2 + ... + P_k, where P_i are primitive valid parentheses strings.
Return S after removing the outermost parentheses of every primitive string in the primitive decomposition of S.
Example 1:
Input: "(()())(())"
Output: "()()()"
Explanation:
The input string is "(()())(())", with primitive decomposition "(()())" + "(())".
After removing outer parentheses of each part, this is "()()" + "()" = "()()()".Example 2:
Input: "(()())(())(()(()))"
Output: "()()()()(())"
Explanation:
The input string is "(()())(())(()(()))", with primitive decomposition "(()())" + "(())" + "(()(()))".
After removing outer parentheses of each part, this is "()()" + "()" + "()(())" = "()()()()(())".Example 3:
Note:
解法
使用一个栈记录最外层括号的状态
保证栈中只有最外层的左括号,然后把内部的括号依次存入一个列表里,使用 count 记录内部左括号的数目,每遇到一个左括号 count 的值就加一,遇到一个右括号 count 的值减一。当遇到一个右括号并且 count 为0时到达最外层的右括号,此时将栈中的左括号 pop 出去即可。
()((()))
stack
final
count
(
(
0
)
0
(
(
0
(
(
(
1
(
(
((
2
)
(
(()
1
)
(
(())
0
)
(())
0
一个更简洁的解法
这个真的写的很棒了。
两种方法的时间复杂度和空间复杂度都是 。
Last updated
Was this helpful?